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The problem of the pattern of motion realized in a convectively unstable system 
with spherical symmetry can be considered without reference to the physical 
details of the system. Since the solution of the linear problem is degenerate 
because of the spherical homogeneity, the nonlinear terms must be taken into 
account in order to remove the degeneracy. The solvability condition leads to 
the selection of patterns distinguished by their symmetries among spherical 
harmonics of even order. It is shown that the corresponding convective motions 
set in as subcritical finite amplitude instabilities. 

1. Introduction 
Next to the famous Rayleigh-BBnard problem of convection in a layer heated 

from below, the problem of convection in a spherical shell heated from within 
has attracted the most widespread attention among geophysicists and astro- 
physicists interested in convective processes. A n  extensive review of early work 
on this problem is included in the form of a special chapter in Chandrasekhar’s 
(1961) monograph. Chandrasekhar also discusses the main motivation for the in- 
terest in the problem, namely the hypothesis of convection in the earth’s mantle. 
Within the past decade the concept of mantle convection has evolved from a 
speculative idea to a well-documented phenomenon. While the details of the con- 
vective motion and the motion of the buoyancy forces have remained obscure, 
the revolutionary geological concept of ‘plate tectonics’ has given a strong boost 
to investigations of convection in the earth’s mantle. Although a large number of 
papers on this subject have appeared in recent years not much attention has been 
paid to the question of the pattern of convection realized. In  this paper we 
demonstrate that this aspect can be separated from other aspects of the problem 
and that a rather general answer to the question can be obtained. 

Convection in a layer with spherical symmetry shares with the problem of con- 
vection in & plane layer of infinite extent the property that the solutions of the 
linearized equations are degenerate. This means that solutions with different 
spatial dependences correspond to the same eigenvalue and thus are equally 
likely to be established. This is a reflexion of the high symmetry exhibited by the 
spherical as well as the plane layer. The degeneracy of the linear problem is an 
unphysical result, however, since even minute additional effects will in general 
remove, or at  least reduce, this degeneracy. Predominant among the effects 
neglected in the linear treatment of the problem are the nonlinear terms in the 
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basic equations. In the case of convection in the earth’s mantle it could be argued 
that the axis of rotation introduces a distinguished direction. It has been pointed 
out, however, that the relevant Taylor number is much too low to be significant 
in the problem (Runcorn 1965; McKenzie 1968). I n  the case of the solar con- 
vection zone, on the other hand, the Taylor number is significant even if a 
turbulent eddy viscosity is assumed. In  an earlier paper (Busse 1970) it was 
shown that the Coriolis force removes the degeneracy and leads to a preference 
for convection in the equatorial belt. 

In  this paper we do a similar analysis to investigate the influence of the non- 
linear terms on the problem of degeneracy. Since the nonlinear terms do not 
introduce preferred directions and since the physical conditions of the problem 
are still spherically symmetric, the problem is more involved than in the case of 
a slowly rotating sphere. Some guidance will be provided by analogy with the 
problem of convection in a plane layer. The general problem of the pattern 
realized in this case was considered by Schliiter, Lortz & Busse (1965) and by 
Busse (1962, 1967). It was found that small asymmetries in physical properties 
between the upper and lower parts of the layer favour the onset of convection in 
the form of hexagonal cells while convection in the form of rolls replaces the 
hexagons when the amplitude of convection becomes sufficiently large relative 
to the magnitude of the asymmetries. The tendency of asymmetries to favour 
hexagons was also found by Palm (1960) and Segel(l965). Hexagonal convection 
has the special property that it can exist for a limited range of finite amplitudes 
at  Rayleigh numbers below the critical value determined by the linear theory. 
The difference between the lowest Rayleigh number at which hexagonal convec- 
tion can exist and the critical value initially increases quadratically with the 
magnitude of the asymmetries. Hence the consideration of the nonlinear terms 
favouring hexagons may also provide an important correction to the linear 
stability result. 

The analogue of hexagonal convection in the case of a spherical shell has not 
yet been investigated. Most mathematical treatments of finite amplitude convec- 
tion have been restricted to two-dimensional analysis by assuming axisymmetry. 
A notable exception is the work by Young (1974), who computed some cases of 
non-axisymmetric convection. In  this paper we shall develop a general theory of 
convection patterns in spherical shells without taking into account in detail the 
physical properties of the shell. Hence quantitative aspects of the problem will 
not be resolved by the theory. We anticipate, however, that the effects which 
favour hexagons in the case of a plane layer will be even more important in the 
spherical case. In  addition to asymmetric properties the geometric asymmetry 
between inner and outer parts of the shell plays an important role. In  planetary 
applications of the problem the temperature dependence of properties such as 
viscosity is likely to be even more important. In  order to exhibit most clearly the 
general nature of the theory we shall not consider the general case, which may 
include compressibility and non-Newtonian fluid properties. Instead we shall 
start in 3 2 with the formulation of the basic problem in terms of the Boussinesq 
approximation to the equations of motion, which has traditionally been used for 
the investigation of convection in spherical shells. 
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The analysis of this paper will be focused on the solvability condition which 
results when nonlinear effects are taken into account as a perturbation of the 
linear problem. In 0 3 we shall discuss the general implications of the solvability 
condition and demonstrate its equivalence to a simple extremum problem. In  
spite of the simplicity of its formulation the problem cannot be solved in general. 
By considering it for different orders 1 of the spherical harmonics which describe 
the solution of the linear problem we obtain solutions for I = 2, 4 and 6 in 
§§4, 5 and 6, respectively. Only partial solutions can be obtained in the cases of 
larger values of 1, which are considered in 3 7 ;  some of the remaining unresolved 
mathematical questions are mentioned at that point. In 5 8 the physical implica- 
tions of the results are discussed. Unfortunately no direct relation between the 
results and the problem of mantle convection can be seen from the present 
observational evidence. Apart from this original motivation for the problem the 
basic nature of results demonstrating the importance of non-axisymmetric 
patterns will make the present results relevant in a number of other applications. 

2. Mathematical formulation 
We consider the problem of convection in a homogeneous fluid contained 

between two concentric spherical boundaries with radii roh and (r,, + 1) h. We 
assume a spherically symmetric gravity force and a distribution of heat sources 
of the same symmetry within the fluid or in the core below it. Thus a static equi- 
librium exists for all values of the temperature difference AT between the 
boundaries. If the temperature increases in the direction of gravity the static 
equilibrium becomes unstable when AT exceeds a finite value. The buoyancy 
force overcomes the stabilizing effects of viscous and thermal dissipation in this 
case and convective motions set in. 

Even though it is not necessary for the purpose of this paper to do so, we 
assume the equations of motions in the Boussinesq approximation. The properties 
of the fluid are regarded as constants with the exception of the temperature 
dependence of the density, which is taken into account in the gravity term only. 
It will become obvious from the analysis that the results apply to  the most general 
types of fluids as long as the spherical symmetry is preserved. 

It is convenient to introduce dimensionless variables by using the thickness h 
of the fluid shell, h 2 / ~  and AT as scales for length, time and temperature, respec- 
tively, where K denotes the thermal diffusivity. Accordingly, the equations of 
motion for the velocity vector u and the heat equation for the deviation 0 of the 
temperature from the static temperature field T(r)  are given by 

(2.1) 

(2.2) 

(2.3) 

The term V n  includes the pressure and other terms which can be written in the 
form of a gradient. r denotes the position vector with respect to the centre of the 
shell. The r dependence of the gravity force -goy(r)r has been normalized in 

- V x (V x u) +R@ry(r) - V n  = (au/at -u x (V x u)) P-1, 

v.u = 0, 

V20 + u . rT'(r)/r = aO/at + u. VO. 
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such a way that go represents the acceleration due to gravity at the inner 
boundary r = ro of the shell. The Rayleigh number R and Prandtl number P are 
defined by 

where denotes the coefficient of thermal expansion and v is the kinematic 
viscosity. 

To eliminate the equation of continuity (2.2) we use the following general 
representation for the solenoidal vector field u in terms of poloidal and toroidal 

(2.4) 
fields : 

By operating on (2.1) with r . V x (V x 

(V2-a/at)V2L2@-Ry(r)L20 = P-lr.Vx(Vx [ ~ ~ ( V X U ) ] ) ,  (2.5) 

R = p g , , A T h 3 / ~ ~ ,  P = V / K ,  

u = V x (V x r@)+Vx rY. 

) we obtain 

where L2 is the negative two-dimensional Laplacian on the unit sphere, i.e. in 
spherical co-ordinates (r, 6, q5) 

Since the linear part of (2.3) involves only @ we need not consider the variable Y”, 
at least as far as the linear problem is concerned. In fact, the equation for Y admits 
only decaying solutions when nonlinear terms are neglected, as is shown in 
Chandrasekhar’s (1961) book. 

We shall consider an expansion for @, 0 and R in powers of the amplitude e of 
convection: 

@ = €@‘(1)+€2@@)+ ..., 0 = E@(U+€20(2)+..*, R = R(O)+€B@)+ ... , 
From (2.3) and (2.5) to order E we obtain the well-known linear problem 

v 4 ~ 2 q m  - ~ c o ) ~ ( ~ )  ~ 2 0 t u  = 0, (2.7a) 

V2@(U + T’(r) r-lLZ@(U = 0. (2.7 b )  

We have assumed steady convection since it has been shown by Chandrasekhar 
(1961), a t  least in special cases, that oscillatory convection cannot occur. Because 
of the spherical homogeneity of the problem the general solution of (2.7) can be 
written in the form 

= f(4 WdO7 $1, = g ( 4  WdO, $), (2.8a) 

where wl is defined by 
1 

m=O 
wl(6,$) = (a, cosm$ +& sin m#) ern(cos 6). (2.8 b)  

The functions @(cosO) differ by a factor from the commonly used associated 
Legeiidre functions, 

p y x )  = [(4Z+ 2) (1 - Qs,,) (1  - m) !/(Z + m) !]:qyX), 
with the result that the average of the square of each spherical harmonic over the 
spherical surface is unity: 

(I&(co~6)cosmq51~) = (Ifim(cos6)sinm$12) = 1 
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for m = 0,1, . . ,) 1. For later use we shall define the average in such a way that it 
can be used for radially dependent functions as well: 

Since wl satisfies the relation 
L2Wi = b ( l +  1) w, 

(2.7) can be reduced to an ordinary differential equation for f ( r )  after g( r )  has 
been eliminated : 

Together with the appropriate boundary conditions (2.10) represents a homo- 
geneous eigenvalue problem with eigenvalue R@). Of particular interest is the 
lowest eigenvalue S O )  as a function of 1, which determines the limit of static 
stability with respect to infinitesimal disturbances in the form of spherical 
harmonics of order 1. 

In this paper we shall not consider special solutions of (2.10). Instead we focus 
our attention on the degeneracy of the linear eigenvalue problem, which mani- 
fests itself in the fact that the 21 + 1 coefficients a, and ~3, in (2.8b) remain 
undetermined. Since R(O)does not depend onm, the linear problem has 21 + 1 linear 
independent eigensolutions. The purpose of the following analysis is to find out 
how the degeneracy of the linear problem is removed or at  least reduced by the 
consideration of nonlinear effects. 

From (2.3) and (2.5) a t  order e2 we obtain 

V4L2@(2) - R(O)y(r) L2@(2) 
= -P-lLz[V(r.V+ 1) Q?(l).VV2~(1)-V2Q?(l)r.VVPQ?(l)] +RcUy(r)LzW, ( 2 . 1 1 ~ )  

V20(2) + T’(r)  L2@(%-1 = [V x (V x rW))]. V W .  (2.11 b )  

This inhomogeneous system of linear equations has a solution if and only if the 
inhomogeneous part is orthogonal to all solutions (Q+, @+) of the adjoint homo- 
geneous system of equations 

( 2 . 1 2 ~ )  

(2.12b) 

The solutions of this system of equations together with the corresponding 
adjoint boundary conditions can obviously be written in the same form (2.8) as 
the solutions of the first-order problem: 

Q?+ = f+(4 W t ( 4  $1, @+ = g+(4 wit(0, $1, (2.13) 

where w;t represents the general spherical harmonic of order 1 as in definition (2.9). 
The solvability condition is obtained by multiplying (2.11 a )  by @+ and (2.11 b )  
by -B0)O+,  adding the results and averaging over the fluid shell. By definition 
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the left-hand side vanishes after partial integrations have been performed and 
the right-hand side yields 

0 = R(l)(y<p+L20(l))-P-1(<p+L2[V(r.V+ 1) <p(~).VV2Q1(1)-V2~(l)r.VVz<p(l)]) 

-R(o)(O+(V(l + r . V ) W ) - r V 2 W )  .VO(l)), (2.14) 

where the angular brackets indicate averages over the fluid shell according to 
definition (2.9). 

Since solutions (2.8) and (2.13) vary only in their 8 and 4 dependences at  a 
given value of 1 and since the r dependence is not of particular interest we rewrite 
expression (2.14) in the form 

my w;' w,) - { wi+ w, wr> M (  2) = 0. (2.15) 

In  deriving (2.15) we have used our freedom to normalize the linear solution 
by setting 

( r ( r ) f+ ( r )  Z(Z + 1) dr)) = 1. (2.16) 

A typical example of the partial integrations required for the derivation of 
(2.15) is 

vswa. V,w,(g+(rf Y9)) = (wl+w,wrW + 1)r-2(9+(rj)r9)) 
- (w, V8W;F. v, wds+(vj) rg)) 

= (wivswt .Vswi(g+(rf )'g)) 
= &(Wf W,W# + 1) r-2(@(rf)'9))y (2.17) 

where 

represents the surface components of the gradient. 

that the linear problem (2.7) is self-adjoint in the special case when 
Before we continue the discussion of the solvability condition (2.15) we note 

(2.18) 

and when in addition the boundary conditions satisfy the condition for self- 
adjointness, as was pointed out by Joseph & Carmi (1966). The function M(E) 
vanishes for all I in the self-adjoint case, as can be readily seen from the particular 
form of the nonlinear advective terms in the basic equations (2.1) and (2.3). The 
energy stability analysis of Joseph & Carmi (1966) may in fact be used to obtain 
an upper bound for M(Z). For the purpose of the present paper we have in mind 
a much more general system of basic equations than (2.1)-(2.3), which we have 
introduced in order to formulate the problem in a simple model case. The con- 
sideration of temperature-dependent fluid properties, for instance, leads to addi- 
tional nonlinear terms which can be taken into account in the stability condition 
(2.15) in the same way as the terms in expression (2.14). The corresponding contri- 
butions to M ( l )  would not vanish in this case even if the linear problem happened 
t o  be self-adjoint. For this reason we may regard the possibility of vanishing M(1) 
as exceptional and proceed with the general problem posed by condition (2.15). 
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3. The solvability condition 
The solvability condition (2.15) is equivalent to the following system of 21 + 1 

equations which represent the 21 + 1 independent choices that can be made for wl+ : 

(3.1 a )  
R*P, = @~(cos  0) sin rn$ wzwz), (3.1 b)  

To simplify the notation we have introduced R* E R(l)/H(l). In  addition we need 
a normalization condition, which we shall specify in the form 

R*a, = (pp(cosB)cosmgh.qw,), m = 0, 1, ..., I, 
nz = I, . . . ,1. 

1 

m=l 
(WIWZ) = af+ CI (a2m+P3 = 1. (3.1 c )  

Relations (3.1) represent a system of 21 + 2 nonlinear inhomogeneous equations 
for the 21 + 2 unknowns a,, P, and R*. In  the following we shall solve this system 
of equations in special cases. 

Before entering the detailed analysis it is of interest to note some general 
properties of the system (3.1). It may readily be seen that (3.1) are the Euler 
equations for the stationary value R* of the functional 

W(w,) = (WZWlWl> (3-2) 
under the side constraint (wlwz) = 1. As we shall point out later, the absolute 
extremum R* of the functional (3.2) is of particular interest. 

Another general property of (3.1) is the fact that they are satisfied by R* = 0 
for all values of a, and /3, restricted only by the normalization condition (3.1 c )  
when I is an odd integer. This follows from the property of any spherical harmonic 
that its values a t  opposite points on the sphere are equal, with the same or 
opposite sign depending on whether 1 is even or odd: 

W,(+,B) = ( - i y W , ( g + ~ , ~ - e ) .  

Thus (wlwlw,) = 0 for odd 1 

since the symmetric function wf is multiplied by an antisymmetric function. 

general variational problem 

has the solution w = & 1, corresponding to R* = & 1. This is the solution in the 
case 1 = 0, which is not of physical interest since it does not correspond to con- 
vective motion. There does not seem to exist a general method for solving (3.1) in 
the case of even 1. Hence we shall consider cases of different 1 separately, starting 
with I = 2, which is the only case in which a complete solution can be obtained in 
analytical form. For higher values of 1 we shall use the fact that an extremalizing 
solution exhibits in general a high degree of symmetry. In  particular we shall 
find that the extremalizing solutions in the cases 1 = 4 and 6 exhibit the 
symmetry of the Platonic bodies, with the exception of the tetrahedron. 

A difficulty in solving (3.1) is that for any solution there exists a continuum of 
solutions obtained by rotations of the co-ordinate system from the given solution. 

The absolute value of R* is always less than or equal to unity, since the 

W(w) = (www)/(ww)~ (3.3) 
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Part of this indeterminacy can be eliminated by suitable additional conditions. 
For instance, we can assume = 0 without losing generality, since any solution 
satisfies this condition after a suitable rotation of the co-ordinate system about 
the polar axis. For reasons of symmetry it is likely that all extremalizing solutions 
possess a plane of symmetry through the origin, with the consequence that they 
can be written in a form with Pn = 0 for n = 1, . . . ,l. However we have not found 
a proof that this hypothesis is correct. 

For the evaluation of the integrals on the right-hand sides of (3.1 a, b )  we intro- 
duce the notation 

A',,, = (@(cos e)  P~(,os e) &COS e)  cos n+ C O S ~ +  cOsq4). 

Most of the coefficients A:,, vanish. Others can be evaluated from the formulae 

which have been obtained from corresponding formulae given by Gaunt (1929). 
General formulae for other triple integrals of spherical harmonics have been 
discussed in the literature. We refer to the most recent paper on this topic, by 
Kaula (1975). 

A special solution of (3.1) is the axisymmetric solution 
olg)=1, a$=PmQ=o for n = i  ,..., 1. ( 3 . 4 a )  

The corresponding value of R * is given by 
R$O = A&,. (3.4 b )  

It is not surprising that the axisymmetric pattern of convection satisfies the 
solvability condition. We shall see, however, that in general the axisymmetric 
solution is not the one realized physically since other solutions yield larger values 
of R*. It is obvious from the symmetry of (3.1) that for any solution (R*, wl) + 0 
there exists a solution ( - R*, - W J .  Since the expansion parameter 8 can assume 
either sign we do not loose generality if we restrict our attention to solutions with 
positive R*, as we have already done in the case of the axisymmetric solution 
(3.4). 

4. The case 1 = 2 
Using the following values of the triple integrals, 

Aooo A = 5 x 54, Aoll = $A, Aoz2 = - A ,  AI12 = $ x 34A, 

the system of equations (3.1) can be written in the form 
R*ao = A(at++a2,+*,!?2,-a;-P%), (4.1 a)  
R*a1 = A[a,a,+3B(a,a2+P~P2)], (4.1 b )  
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R*81 = A [ a o ~ l B , 3 3 t ( a l ~ , - a Z r 8 1 ) 1 J  (4.1 c) 

R*a, = A[-%,a,+&x 3a(aB,-B;)], (4.1 d )  
R*A = A( - 2a0A + 31a1B2), (4 .1  e) 

1 = ai+a;+p!+ai+,@. (4Jf  1 
Assuming B1 = 0 we find from (4.1 c) that pz vanishes as well. The remaining four 
equations can be solved explicitly. The general solution is 

a f = ~ ( i + 2 a o ) ( 1 - a o ) ,  a,=(1-ao)/3) ,  R* = A  (4.2) 

for arbitrary values of a. with lao\ < 1. Comparison with (3.4) shows that solution 
(4.2) represents the axisymmetric solution rotated about the axis B = &r, 
4 = 5 in. Henoe the axisymmetric solution is the only solution in the case 1 = 2 
which satisfies the solvability condition (2.15). This is a non-trivial result, since 
the general representation (2.8 b )  contains other patterns, which are excluded by 
the solvability condition. We emphasize this point in contrast to the case I = 1 , 
where all possible choices of coefficients in (2 .8  b )  correspond to transformations 
of the same solution. For this remn we do not encounter the problem of 
degeneracy for 1 = 1. 

5. The case I = 4 

The general solution obtained in the case 1 = 2 suggests that solutions of (3.1) 
can always be obtained in a form with p,,, = 0 for all m. In order to simplify 
the analysis we shall use this hypothesis and neglect the equations for the Bn. 
Thus we obtain 

R*ao = A o o o a ~  +AollaS, + A o , , a ~  + A o , 4  + Ao,a:, (5.1 a) 

R*al = 2Ao1,aOal+ 2A,,,ala,+ 2A,,,a,a,+ 2A13,a3a,, (5.1 b )  
R*a, = 2Aozaaoa2+All,a~+ 2Al,ala3+2A,a,a4, (5.1 c )  

R*a3 = 2Ao,,a0a3 + 2A1,,ala, + 2A134a1a4J (6.1 d )  
R*a4 = 2A,a,a4+2Al,a,a,+A2,a~, (5.1 e)  

1 = a~+a2,+a:+a~+a2 4' (6.1f 1 
Evaluation of the triple integrals yields 

In order to obtain a general impression of the manifold of solution (6.1) an exten- 
sive search was made for extreme values of the functional (3.3) with w = w4. 
Discrete values between k 10 were assigned to the variables x,,, = an/ao, 
m = 1, . . . ,4, and the grid system was refined in regions where the absolute value 
of the functional became large. This numerical scheme did not indicate any 
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FIGURE 1. Pattern of convection with cubic symmetry in the ease 1 = 4. Lines of constant 
radial velocity have been drawn for w = 0-4n($)*, n = - 3, - 2, - I ,  0, 1, 2. Depending on 
the sign of eR(1) the motion is ascending or descending in the shaded areas. 

solution other than transformations of the axisymmetric solution (3.4) and of 
the solution a. = *(8)4, a4 = &$)4, a1 = a2 = a3 = 0, (5 .2a )  

(5.2 b )  

Although the numerical scheme emphasized extreme values of the functional 
(3 .3) ,  no indication of other stationary values was found, which suggests that 
(5.2b) and the axisymmetric value R,* = A are the only values of R* except for 
changes in sign for which the solvability condition (3.1) is satisfied in the casel = 4. 
We note that RT is larger than the axisymmetric value, with the consequence 
that in contrast to the case I = 2 a non-axisymmetric solution provides the 
extremum of the functional (3 .2) .  

Solution ( 5 . 2 a )  exhibits the symmetries of a cube with opposite sides facing 
the poles or of an octahedron with opposite vertices pointing towards the poles. 
This suggests another simple representation of solution (6 .2)  when the co-ordinate 
system is rotated in such a way that the axis is aligned with a largest diameter of 
the cube. The representation obtained in this case, 

has been used in figure 1, which exhibits the asymmetry between positive and 
negative regions of w typical of the extremalizing solutions of (3 .2) .  Depending 

a0 = - (&)*, a3 = 2(&)4, at = a2 = a4 = 0, (5 .3)  
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on the sign of 8 these regions correspond to either ascending or descending con- 
vective motions. The cube-like or six-cell solution (5 .2 )  appeared in the numerical 
computations of Young (1974)’ indicating the particular stability of the 
extremalizing solutions. We shall discuss this property in more detail in 8 8 using 
the analogy with hexagonal convection cells in a plane layer. 

6. The case I = 6 
The increasing complexity of (3.1) for increasing 1 prohibits a complete investi- 

gation of the manifold of solutions for larger values of 1. The number of distinct 
solutions increases strongly with 1. Only solutions corresponding to extremal 
values of R* are of physical interest, however. Since those solutions are also 
distinguished by their high symmetry, we shall use this property as a guide in the 
search for the extremalizing solution. 

The system of equations (3.1) in the case 1 = 6 is sufficiently similar to (5.1) 
that it is not necessary to write it down explicitly. We note only a few of the triple 
integrals which will be needed for the calculation of solutions: 

The fact that the extremalizing solution in the case 1 = 4 exhibits the symmetry 
of a simple polyhedron suggests that the extremalizing solution for 1 = 6 also 
corresponds to a polyhedron. Indeed, it is easily verified that a solution reflecting 
the symmetries of a dodecahedron satisfies the equations 

= 6 x ( l l ) i ,  a5 = * x (la)*, C I ~  = a2 = a3 = = a6 = 0, (6.1 a)  

(6.1 b )  

The same symmetry is exhibited by an icosahedron which has faces in the form 
of equilateral triangles. Hence another simple representation of solution (6.1) 
can be obtained by using the triangular symmetry: 

a3=5(T)  1 1 1 x 1 4  3 a --“(2)+, a,=a ,=a4=a5=0 .  
’ 6 - 9 3  

a. = $ ( l l ) i ,  

Lines of equal vertical velocity are shown in figure 2. The structure of ten cells 
exhibited by the solution resembles the hexagonal cell pattern in a plane layer 
with the difference that the cells are pentagons rather than hexagons. 

There are two additional solutions in the case 1 = 6:  
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FIGURE 2. Pattern of convection with the symmetry of a dodecahedron in the case 1 = 6. 
Lines of constant radial velocity have been drawn for w = 2 4 (  11 x 13) 1, n = - 2 ,  - 1 , 0 , l .  
Depending on the sign of eR(1) the motion is ascending or descending in the shaded areas. 

These solutions are not of physical interest because of their relatively low values 
for R*, Even though a complete investigation of all solutions has not been made, 
it can hardly be doubted that the absolute extremum of R * is attained by solution 
(6.1). 

7. Solution for large I 
The solutions in the cases 2 = 4 and I = 6 have exhausted the symmetries of 

the Platonic bodies with the exception of the tetrahedron. The symmetry of the 
latter body cannot be realized among the extremalizing solutions since it does 
not satisfy the basic symmetry of polar points common to all spherical harmonics 
of even order. Since none of the solutions for larger 1 is distinguished by its sym- 
metry it becomes difficult to isolate the solution corresponding to the absolute 
extremum of R". 

All solutions discussed so far belong to one of the two classes 

a,, + 0,  a,,aZn $: 0 for 41 < n < 1 1  

uo + 0,  a, =+ 0 for a single n > il, 
a, = 0 otherwise. 

a, = 0 otherwise; - 2 ' >  
(7.1 a) 

(7.1 b )  
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An inspection of (3.1) shows that solutions of the form (7.1) are always possible, 
and i t  is easy to derive the explicit expressions for the coefficients a,. In  order to 
calculate those solutions in the case 1 = 8 we determine first the relevant triple 
integrals: 

b 

72x 10x(17)4, 
23 x 1 9 x  13 ' A m o = A =  A ,  = -%A, A,, = --- :4A, A,,, = %A, 

All possible solutions in the two classes (7.1) correspond to one of only two 
different values of R*. Those corresponding to the larger value of €2" are 

13(13)& 
35 A, RT z- 

with a 0  = (%)*, a, = (g)*, a, = 0 otherwise; 

"0  = (%)*, a6 = (g)$, a, = 0 otherwise; 

a, =- --(13)' a, = +?, a, = 0 otherwise; 
7 
1 1 3 x 1 4  3 (22)i 

a, = -*(13)*, a,=&), a,=-- 9 x  34' a, = 0 otherwise; 

, a s = - a 1 1 4  (21 x 13)4 
20 

x(-%-) , a, = 0 otherwise. (1  3)4 or a. =-, a4 = 

The solutions corresponding to the other value of R* are 

R: =+(33)L4, (7.3) 
with a. = 8(3-) 1 1 1  * , a, = &(70)*, 016 = &(26)4, a, = 0 otherwise 

or cco = 9(33)4, a4 = a(:)*, as = &(y-)*, a, = 0 otherwise. 

Obviously, not all solutions corresponding to Rq are transformations of each 
other. In  cases when distinct solutions share the same value of R* the degeneracy 
is not removed and higher-order effects must be considered. 

In  contrast to  the cases 1 = 4 and 1 = 6, where strong arguments support our 
contention that the absolute extremum of R* is given by ( 5 . 2 b )  and (6 . lb) ,  
respectively, we do not have similar arguments to prove that the value (7.2) is 
indeed the largest possible value in the case I = 8. Nevertheless, it  seems likely to 
us that this is indeed the case since we have exhausted the possibilities for 
obtaining simple solutions. In  figure 3 extremalizing values of R* are shown in 
comparison with those corresponding to axisymmetric solutions. While the 
axisymmetric value shows a monotonic decay for increasing 1 the extremaIizing 
value tends to fluctuate. For large 1 it  should approach the value for the plane 
layer 

RS = 2/64, (7.4) 
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R* 

0.5 

0 2 4 6 8 
1 

FIGURE 3. Value of R* as a function of 1. The lower dashed line connects values R: corre- 
sponding to  the axisymmetrio solution; the upper dashed line indicates the value for 
hexagons in a plane layer. 

which corresponds to the hexagon solution 
3 

m= 1 
WE = (+)* C cosknz.r, 

where the vectors k satisfy the conditions 

(k,( = (k,( = Ik3( = CG, kl+k,+k, = 0. 

Of course, a hexagonal pattern cannot be realized on a spherical surface 
according to Euler's theorem V - E +P = 2, where V ,  E and P denote the 
number of vertices, edges and faces, respectively, of the polyhedron. It seems, 
however, that a hexagonal pattern can be closely approximated, as the natural 
phenomenon displayed in figure 4 suggests. 

Nearly hexagonal patterns corresponding to large values of Z are also observed 
when a thin elastic spherical shell buckles under the influence of a uniform 
pressure. The corresponding mathematical problem has been treated analytically 
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FICTJRE 4. Skeleton of the radiolaria Aulonia hexagona, from Thompson (1942). 

by Koiter (1969). In the limit of large 1, Koiter derived asymptotic expressions 
for R* for solutions (7.1 a, b)  in the special case n = *l.  However, the results show 
a decay of R* proportional to 1-* for large 1. Hence it appears that the corre- 
sponding solutions do not approach a nearly uniform hexagonal pattern asymp- 
totically. The problem of the correct asymptotic transition from the spherical 
case to the case of an infinite plane is part of the more general problem of the 
asymptotic transformation between spherical harmonics and trigonometric 
functions, which has not yet been solved in a uniform manner. 

8. Discussion 
The analysis of this paper is restricted to the problem of the pattern of oonvec- 

tion in spherical shells. Since the radial dependence of the problem and the 
quantitative nature of the nonlinear terms do not enter the analysis the results 
apply to all problems with a degenerate set of eigenfunctions of the form (2.8 b )  
in the linear approximation. Some of the quantitative details, in particular 
higher-order effects, require specification of the radial dependence. Since this is 
beyond the scope of the present paper quantitative aspects will be mentioned 
only briefly in the following discussion. 

A major result of our analysis is the fact that the solvability condition (2.15) 
does not resolve the degeneracy in the case of odd 1. The coefficient R(1) vanishes 
for all spherical harmonics of odd order and so do the other coefficients R(n) with 
odd n, as we may deduce from the general nature of our argument. Since the 

6 F L M  72 
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contribution to R of the coefficients R(n) with even n is in general positive, we 
conclude that no subcritical instabilities occur in the case of odd 1. In  the case of 
even 1, solutions satisfying (3.1) with a finite value of R* can always exist at 
subcritical values of the Rayleigh number because of the freedom to choose the 
sign of B such that eR(1) is negative. 

Although the solvability condition (2.15) eliminates or at  least reduces the 
degeneracy of solutions in the case of even 1, there exist in general two or more 
solutions corresponding to different values of R*. Only in the case 1 = 2 is a single 
solution, apart from rotational transformations, isolated by the solvability condi- 
tion. In  order to discuss the physical relevance of different values of R* we must 
consider the dependence of the Rayleigh number on the amplitude e, which for 
sufficiently small values of B assumes the form 

R = R(0) + &(I)  +- eaR(2). (8.1) 

The minimum value of R according to this relation is given by 

Rmin = R(0) - I R(1)12/2R(2). (8.2) 

R@) is generally positive and mainly represents the effects of changes in the 
horizontally averaged temperature field induced by convection. Hence R@) tends 
to vary little for different solutions at a given 1. Neglecting those variations and 
neglecting the fact that higher-order contributions will modify the simple relation 
(8.2) we may conclude that solutions with the largest value of R* correspond to  
the lowest value of the Rayleigh number at  a given value of 1. Since the solution 
with the lowest value Rmin represents the physically realized one at least for low 
Rayleigh numbers, convection patterns with even 1 and an extreme value R:$ 
will be preferred. Unless the relevant value R@)(Z) is very small and Bo)(Z) attains 
a sharply defined minimum a t  an odd integer 1 we do not expect to see patterns 
with odd 1 realized. In most cases the minimizing value of 1 is of order ro. In some 
cases it may be much lower, for example when the ratio between the thermal 
conductivity of the fluid and that of the boundary is high (Sparrow, Goldstein & 
Jonsson 1963). Hence the axisymmetric solution in the case Z = 2 and the 
'Platonic' solutions in the cases I = 4 and 6 may have physical significance even 
in the case of rather thin shells. 

A complete discussion of the physically significant solutions requires a stability 
analysis, which cannot be done without specific information about the fluid shell. 
The results are expected to be similar, however, to the case of a plane layer, 
which has been treated in detail by Busse (1962, 1967). In  particular, it may 
easily be seen from the analogous property of hexagons that all solutions are 
unstable for amplitudes I E ~  below the value corresponding to the minimum 
Rayleighnumber (8.2), since within this range the amplitude 161 actually increases 
with decreasing Rayleigh number. Above this range the solution corresponding 
to the absolute minimum of (8.2) will be stable, at least for a finite range of 
amplitudes. In  the case of a plane layer the extent of the stability region depends 
on the amount of asymmetric properties of the layer. We expect that the corre- 
sponding effect in the case of a fluid shell will be more persistent. Because the 
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interior of the plane layer becomes more isothermal with increasing amplitude of 
convection the effect of temperature-dependent properties is minimized, and 
hexagonal cells are usually realized only in a limited range of Rayleigh numbers, 
and replaced by rolls beyond that range. If compressibility is taken into account 
the isothermal interior is replaced by one with an adiabatic temperature distribu- 
tion and the preference for hexagonal convection based on temperature- 
dependent material properties will persist at  high Rayleigh numbers. In  the case 
of a spherical shell asymmetries persist even in the isothermal case and a com- 
peting solution as simple as the two-dimensional roll solution does not exist. 
This suggests that in most cases the results derived in this paper will hold qualita- 
tively at  much larger Rayleigh numbers than those for which expression (8.1) 
provides a good approximation. The forms of the lines of equal velocity in figures 
1 and 2 are expected to change but not the symmetry of the patterns. 

As we mentioned in the introduction, much of the recent interest in convection 
in a spherical system has been motivated by the problem of convection in the 
earth’s mantle. Unfortunately, there is no convincing evidence that the results 
of this paper are applicable in this case. Gravity data and other global data 
related to mantle convection do not distinguish particular spherical harmonics 
and do not even show a preference for even orders. This indicates that either the 
inhomogeneous distribution of continents or inhomogeneities in the mantle 
exert a stronger influence than the nonlinearity of the dynamics, or that the 
basic mode of convection corresponds to the case 1 = 2 at the lower end of the 
spectrum. 

9. Concluding remarks 
The occurrence of convection in a spherically symmetric system is necessarily 

associated with the destruction of symmetry. In thinking about this problem it 
may be anticipated that convection patterns of the highest possible symmetry 
will be preferred. Attempts to use group theoretical methods in order to investi- 
gate convection patterns without using equations of motion have been made by 
Walzer (1971). Also, Spilhaus (1975) has suggested similarities between the 
pattern of plate tectonics and the symmetries of Platonic bodies. The analysis 
given in this paper indicates, however, that heuristic principles are not sufficient 
and that the dynamics of the system must be taken into account to infer the 
preferred pattern. Otherwise it cannot be understood why octahedron symmetry 
corresponds to a preferred pattern but tetrahedron symmetry does not. 

The main result of this paper is the qualitative difference between convective 
patterns of odd and even order 1. This difference does not have a direct analogue in 
the case of a plane layer, where solutions with different wavenumber differ only 
quantitatively. An analogy can be drawn, however, between spherical patterns 
of even order and the hexagon solution and its superpositions in the case of a plane 
layer, since both correspond to non-vanishing values of the functional (3.2). 
The functional vanishes for all other solutions for the plane layer such as rolls 
and rectangles, which are similar in this respect to spherical patterns of odd 
order. 

6-2 
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Throughout the analysis of this paper it has been evident that the problem of 
degeneracy and its removal by nonlinear effects is common to all eigenvalue 
problems with spherical symmetry. The presence of inhomogeneities and physi- 
cally distinguished directions in most phenomena account for the relative rarity 
of spherically homogeneous eigenvalue problems. Apart from spherical convec- 
tion we have previously mentioned the problem of buckling of a spherical shell. 
Other examples are the cracking pattern of a symmetrically cooling solid sphere 
and oscillations of a non-rotating star. Finally, deviations from homogeneity on 
the cosmical scale may be related to the removal of degeneracy by nonlinear 
effects. 

This work was first presented in 1974 at  the Woods Hole Summer Program in 
Geophysical Fluid Dynamics under the directorship of Prof. G. Veronis. I am 
grateful to Prof. C. Lange for pointing out to me the work by Koiter and to Prof. 
E. Spiegel for referring me to the book Symmetry by H. Weyl. M. Bossen, E. Ivins 
and T. Virgil have assisted me in parts of the numerical calculations. The research 
was supported by the National Science Foundation under Grant GA-31247 and in 
part by NASA under Grant NSG 7002. 

Note added in proof. I should like to use this opportunity to make two corrections 
t o  an earlier paper (J .  PZud Mech. 1972, 52, 97-112). In  expression (2.7), 47r 
should be replaced by 87r, and in expression (5.2), 2/34b by ($)*/b. These correc- 
tions do not affect any other parts of the paper. I am grateful to Dr Lipps for 
pointing out the second correction. ’ 
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